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Introduction

Differential equations are equations that relate functions with their derivatives. In this course, we
mainly work with functions of single variables, with vector-calculus being the focus of MA134 Geometry
& Motion. This module is very computational in nature, with most of the questions you encounter
simply asking you to write, solve and interpret differential equations and recurrence relations. This
computational aspect is somewhat shared with MA106 Linear Algebra.

This document is intended to broadly cover all the topics within the Differential Equations module.
Integration skills from A-Levels are assumed and will not be covered extensively. Knowledge of recurrence
relations (from Edexcel FP2/DM2 o.e.) is not assumed.

This document is not designed to be a replacement for lecture notes, although you can certainly use it
as one if you already have a solid understanding of the content from outside of the course - much of
the content is covered in a different order than is taught in the course (for example, partial derivative
notation is covered in the first section of these notes, before it would be covered in lecture notes, in order
to keep the notation section comprehensive and cohesive), so it is not recommended to learn the module
from these notes unless you are familiar with most of the content already.

Many of the techniques developed here are used extensively in further (and many core!) modules -
notably, MA134, MA250, MA261, MA263, and MA269, so take care not to just forget everything you’ve
learned once the exam has passed by.

Some of the techniques used towards the end of this module will perhaps not make much sense until you
have completed MA106 and MA134, so don’t worry if you’re reading this ahead of time and are finding
some of the techniques somewhat opaque.

Due to the computational nature of this module, this document mainly consists of a checklist of how
to solve different types of differential equations and recurrence relations, with not much in the way of
theory.

Disclaimer: This document was made by a first year student with a severe disinterest in calculus.
I make absolutely no guarantee that this document is complete nor without error. In particular, any
content covered exclusively in lectures (if any) will not be recorded here. Additionally, this document
was written at the end of the 2022 academic year, so any changes in the course since then may not be
accurately reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.
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Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

Newton’s notation will not be used in this document. Lagrange’s notation will be preferred, with Leibniz’s
notation used wherever differentials are more helpful (i.e. separable equations).

History
First Edition: 2022-06-10∗

Current Edition: 2022-06-13

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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1 Functions and Variables

1.1 Terminology & Notation

1.1.1 Variables

Variables measure things. We can classify them into independent and dependent variables.

If a variable, for example, x, is a function of another variable, say, t, then x would be the dependent
variable as its value is dependent on t, the independent variable. Usually, we see this written as x(t).

There doesn’t have to be a one-to-one correspondence between dependent and independent variables
either: for example, you could have temperature as a function of position in 3D, f(x,y,z), where f is the
dependent variable, and x,y, and z are independent variables.

Dependent variables can usually be differentiated with respect to the independent variable(s).

1.1.2 Derivative Notation

When there is only one independent variable, we may save space and use Lagrange’s (prime) notation
over Leibniz’s (quotient) notation:

dy

dx
= y′

d2y

dx2
= y′′

dny

dxn
= y(n)(x)

For nth derivatives in Lagrange’s notation, do not omit the independent variable as to avoid confusion
with exponents.

If the independent variable is time, we may also use Newton’s (dot) notation:

dx

dt
= ẋ

d2x

dt2
= ẍ

Newton’s notation becomes rather unwieldy for derivatives of order higher than 2 or 3.

The partial derivative of a function f(x,y,z) with respect to x, is variously written as,

∂f

∂x
, fx, ∂xf

Other notations exist, but these are the main ones used in MA133 and MA134.

The second-order partial derivative of f with respect to x is written as,

∂2f

∂x2
, fxx, ∂xxf, ∂

2
xf

and the second-order mixed derivative of f with respect to x, then y is given by,

∂2f

∂y∂x
, fxy, ∂yxf, ∂y∂xf

Differential Equations | 1
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1.1.3 Properties of Differential Equations

If a differential equation only has one independent variable, it is referred to as an ordinary differential
equation, or ODE. Differential equations involving several independent variables are partial differential
equations.

The order of a differential equation is the order of highest derivative present in the equation.

A differential equation is;

• autonomous if the independent variable does not appear in the ODE

• linear if the ODE can be written in the form, a(t)x+ b(t)x′ + c(t)x′′ + · · · = f(t).

• homogeneous if f(t) = 0 in the expression above.

1.2 Existence and Uniqueness of Solutions
Consider the ODE,

x′(t) = f(x,t)

If both f(x,t) and ∂f
∂x exist and are continuous for x ∈ (a,b) and t ∈ (c,d), then, for any X ∈ (a,b) and

T ∈ (c,d), the ODE has a unique solution on some open interval containing T (You will learn the formal
definition of continuity in MA131 Analysis II ).

Split up more finely, the theorem says that, if dx
dt = f(x,t) and x(a) = b, then, a solution exists if f(x,t)

is continuous near (a,b), and that the solution is unique if ∂f
∂x is continuous near (a,b).

Example.

x2 + t2
dx

dt
= 0; x(0) = c; c ̸= 0

At t = 0, the equation reduces to x2 = 0, but we have x(0) ̸= 0, so this differential equation does not
have any solutions.

Example.
dx

dt
=

√
x; x(0) = 0

Clearly, the constant function x(t) = 0 is a solution, but we also have,

x(t) =

{
0 if t ≤ c
(t−c)2

4 if t > c
; c > 0

valid for any positive c. So, this differential equation does not have a unique solution.

But it might not be easy to find multiple solutions, so we can check using the theorem above. This
differential equation fails the requirements because x′(0) is not well defined, and is hence not continuous.

1.3 Fundamental Theorem of Calculus

Suppose f : [a,b] → R is continuous. Let G(x) =
∫ x

a
f(z) dz. Then, d

dxG(x) = f(x) (i.e., G is an
antiderivative of f) and furthermore,

∫ b

a
f(x) = F (a)− F (b) for any F such that F ′(x) = f(x).

Differential Equations | 2
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2 First Order Differential Equations

2.1 Linear
For brevity, I will not notate the independent variable from this point onwards (so when you see x or x′,
I mean x(t) and dx

dt , etc.) unless relevant or helpful to the method (i.e., separable equations).

2.1.1 Homogeneous with Constant Coefficients

x′ + ax = 0

If you have a coefficient on x’, divide everything by that coefficient to get it into the form above before
proceeding.

The solution is given by,
x = Ae−at, A = x(0)

2.1.2 Separable

dx

dt
= f(x)g(t)

dx

dt
= f(x)g(t)

1

f(x)

dx

dt
= g(t)∫

1

f(x)

dx

dt
dt =

∫
g(t) dt∫

1

f(x)
dx =

∫
g(t) dt

After evaluating these integrals, simply rearrange for x.

2.1.3 Homogeneous with Non-Constant Coefficients

x′ + f(t)x = 0

This is just a separable equation:

x′ = f(t)x

dx

dt
= f(t)x

1

x

dx

dt
= f(t)

lnx =

∫
f(t) dt

lnx = F (t) + C

x = AeF (t)

Differential Equations | 3
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2.1.4 Non-Homogeneous

x′ + f(t)x = g(t)

First, solve the homogeneous version, x′ + f(t)x = 0, to get the complementary function.

Next, we need to get the particular integral.

We need to multiply both sides by some function, I(t), such that we can apply the product rule in reverse
on the LHS;

i.e., we want,

I(t)x′ + I(t)f(t)x = (I(t)x)′ (1)

but,

(I(t)x)′ = I(t)x′ + I(t)x (2)

so by equating (1) and (2), we have I ′(t) = I(t)f(t), so I(t) = e
∫
f(t) dt.

Now, we have,

I(t)x′ + I(t)f(t)x = I(t)g(t)

(I(t)x)′ = I(t)g(t)

I(t)x =

∫
I(t)g(t) dt

x =
1

I(t)

∫
I(t)g(t) dt

Adding this to the complementary function found earlier gives the general solution.

I(t) is an integrating factor of the differential equation.

2.2 Substitutions for Non-Linear ODEs

2.2.1 Type I

x′ = f
(x
t

)
Let u = x

t . Then, x = tu

x = tu

x′ = (tu)′

We use the product rule (“ left dee-right plus right dee-left”) here, remembering that the derivative of t
with respect to t is 1.

x′ = tu′ + u

f(u) = tu′ + u

f(u)− u = tu′

which is a separable differential equation.

Differential Equations | 4
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2.2.2 Type II

x′ + f(t)x = g(t)xn

Let u = x1−n, so,

u′ = (1− n)x−nx′

u′ = (1− n)x−n (g(t)xn − f(t)x)

u′ = (1− n)
(
g(t)− f(t)x1−n

)
u′ = (1− n) (g(t)− f(t)u)

u′ + (1− n)f(x)u = (1− n)g(t)

which allows the use of an integrating factor.

2.3 Phase Lines
A non-linear ODE will often not have an explicit solution, but we can still analyse them in a couple of
ways. We can identify and classify fixed points of an autonomous ODE with phase lines.

Given an ODE,
x′ = f(x)

draw a graph with x′ on the vertical axis, and x on the horizontal axis.

Wherever the graph lies above the line, a particle lying on the x-axis will have positive x′, and will
therefore move to the right. Similarly, wherever the graph lies below the line, the particle will have a
negative x′, and will move to the left.

You should indicate these directions with arrows on the x-axis.

If a point where the graph touches the x-axis has arrows pointing inwards, it is stable. If it has arrows
pointing outwards, it is unstable. If arrows point inwards from one direction and outwards from another,
it is structurally unstable.

The three prior cases are also known collectively as fixed points, stationary points or equilibria.

Example.

(1) (2) (3) (4)

x′=f(x)

x

x′

Differential Equations | 5
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In the diagram above, (1) is structurally unstable, (2) is stable, (3) is structurally unstable (but in a
different manner than (1)), and (4) is stable.

We have not solved the ODE, but have still managed to determine some qualitative behaviours of the
solutions. Notice that a particle that starts past point (4) will move to the right indefinitely, while a
particle that starts anywhere to the left will eventually hit point (1). We call the behaviour of a solution
as t → ∞ the asymptotic behaviour or sometimes the large time limit, if the limit is well defined.

The stability of a fixed point clearly depends on how the line interacts with the x-axis. If the line has
positive gradient when crossing the x-axis, the point is unstable, and if negative, stable. If the line
touches the x-axis, but does not cross it, then the point is structurally unstable.

Note: having a gradient of zero is not sufficient (although necessary) to determine if a fixed point is
structurally unstable. For example, the graph of x′ = x3 has zero gradient at x = 0, but still crosses the
x-axis, causing it to be unstable. You should always draw a diagram.

2.4 Euler’s Method
Consider the ODE,

x′ = f(x,t), x(0) = X

and suppose we cannot find an analytic solution.

In Euler’s Method, we find a numerical approximation to the solution.

First, we pick a small time step, h, and assume that x′ is approximately constant over the small time
step h. With that assumption, we use the Taylor expansion of x(t+ h),

x(t+ h) = x(t) + hx′(t)

= x(t) + hf(x(t),t)

so, the solution to the DE is approximated by the recurrence relation,

x(n+ 1) = x(n) + hf(x(n),nh)

Note that we only use the first two terms of the Taylor series, as any further derivatives are 0, since we
assume x′(t) is constant.

3 Second Order

3.1 Homogeneous

ax′′ + bx′ + cx = 0

Form and solve the characteristic or auxiliary equation,

aλ2 + bλ+ c = 0

There are three cases:

• Two real roots: If λ = α,β, then x = Aeαt + Beβt, where A and B are constant coefficients to be
found.

• Repeated real root : If λ = α with multiplicity 2, then x = (A+Bt)eαt.

• Complex roots: If λ = p± iq, then x = ept(A cos(qt) +B sin(qt))

Differential Equations | 6
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3.2 Damping
In the above equation, if,

b = 0, then the system is undamped ;
b2 − 4ac < 0, then the system is underdamped ;
b2 − 4ac = 0, then the system is critically damped ;
b2 − 4ac > 0, then the system is overdamped.

An undamped system represents a system without friction, and will oscillate regularly forever. Un-
derdamped systems still oscillate, but a little bit of friction is present, causing the amplitude to decay
over time. Critically damped systems generally do not oscillate, simply decaying to zero. Overdamped
systems behave similarly, but with a slower decay.

3.3 Non-Homogeneous

ax′′ + bx′ + cx = f(t)

Solve the homogenous version, ax′′ + bx′ + cx = 0, to get the complementary function.

Now, we want the particular integral to deal with the non-homogeneous part. We make an ansatz
depending on the form of f(t). If f(t) is a polynomial, we set x equal to a general polynomial of the
same degree. If f(t) is exponential, we try the same. If f(t) contains a sine, a cosine or both, we try a
linear combination of both.

i.e., if f(t) = 3 cos(5t), then we try x = A cos(5t) +B sin(5t). Note that we keep the 5’s intact, and that
we use both sines and cosines, despite f(t) only containing cosine.

Common oversight: Furthermore, if the complementary function matches f(t) in any way, we must
multiply our ansatz by t to avoid getting a solution we already have.

Find the first and second derivatives of your ansatz, and substitute into the original equation to solve
for any unknown constants.

Remember to add the complementary function to your particular integral afterwards to get the general
solution.

If you do not want to use the method above (Undetermined Coefficients), there is an alternative method:
Variation of Parameters.

The method of undetermined coefficients only works when f(t) is polynomial, exponential, (hyperbolic)
trigonometric, or a linear combination of the previous.

Variation of parameters is a more powerful technique that works on a wider range of functions, but
requires a little more work.

If you would like to learn this method, see § 7.2.

3.4 Resonance
We consider the ODE for a mass/spring system,

x′′ + cx′ + ω2x = F cos(Ωt)

Where F cos(Ωt) is some forcing term.

If the system is underdamped (§ 3.2), this ODE has the solution,

x(t) = A cos(Ωt− ϕ) +Be−
ct
2 cos(αt+ δ)

Differential Equations | 7
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for very complicated and mostly irrelevant constants, α, A and ϕ.

But notice how as t → ∞, the second term tends to 0 due to the negative exponential. This second term
is the transient behaviour term, while the first term is the steady state solution.

If there is no forcing and no friction, i.e., F = 0 and c = 0, α = ω, and the system oscillates as a whole
with natural frequency ω

2π .

If forcing is present, then, as Ω → ω, A → ∞. This effect is resonance.

4 Recurrence Relations

The methods outlined here I learned outside of this course, so use at your own risk.

4.1 First Order

4.1.1 Homogeneous

Consider the recurrence relation,

xn = axn−1

The solution can be found using back substitution:

xn = axn−1

= a2xn−2

= a3xn−3

...
= anx0

If initial conditions aren’t given, then xn = Aan will suffice.

4.1.2 Non-Homogeneous

xn = axn−1 + f(n)

Solve the homogeneous version, xn = axn−1, to get the complementary solution. Then choose an ansatz
using the same procedure as outlined in § 3.3 and substitute it into the non-homogeneous solution to
solve for any unknowns.

Note, if a = 1 and f(n) is a polynomial, you need to multiply your ansatz by n. But also, if a = 1, it
may be easier to do back substitution anyway, so keep that in mind.

4.2 Second Order

4.2.1 Homogeneous

Homogeneous
axn+2 + bxn+1 + cxn = 0

Solve the characteristic equation,
aλ2 + bλ+ c = 0

Again, there are three cases:

Differential Equations | 8
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• Two real roots: If λ = α,β, then x = Aαn +Bβn, where A and B are constant real coefficients to
be found.

• Repeated real root : If λ = α with multiplicity 2, then x = (A+Bt)αn, where A and B are constant
real coefficients to be found.

• Complex roots: If λ = p± iq, then convert λ to polar form, p± iq = reiθ, and x = rn(A cos(nθ) +
B sin(nθ)). Or, if you hate trig like I do, use the same form as for two real roots, and solve for
complex A and B.

4.2.2 Non-Homogeneous

See § 4.1.2 and § 3.3. These are done using the exact same procedure.

The only thing to note is, if you have an exponential in your ansatz, you have to be a little careful: if
the base of the exponential is equal to one of the roots of the auxiliary equation, multiply by n, like with
ODEs. But if the root is repeated, you need to multiply by n2.

4.3 Other
A fixed point of a recurrence relation, xn = f(xn−1) is a value of x = k such that f(k) = k. If |f ′(k)| < 1,
then k is a stable fixed point. If |f ′(k) > 1|, then k is an unstable fixed point.

5 Systems of Linear First Order ODEs

Much of the theory in this section depends on knowledge from MA106. Many of the methods may
seem rather arbitrary and unexplained when first taught, but will make much more sense once you have
completed Linear Algebra.

If you need a refresher for linear algebra, or are reading ahead for the year and wish to learn more, I
have also written a guide for that module.

5.1 The Jacobian
The Jacobian matrix of a function, f : Rn → Rn, denoted Df , is the matrix of partial derivatives,



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn

...
...

...
. . .

...

∂fn
∂x1

∂fn
∂x2

∂fn
∂x3

· · · ∂fn
∂xn


This can be more compactly written as, [

∂f

∂x1
· · · ∂f

∂xn

]
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or, 
∇Tf1

...

∇Tfn


If you are unfamiliar with the ∇ operator, you may look forward to MA134, where you will learn to
dread its appearance.

You should familiarise yourself well with the Jacobian, as it appears everywhere in calculus.

Using the Jacobian, we can now define:

5.2 Existence and Uniqueness 2: Electric Boogaloo
d

dt
(x(t)) = f(x,t)

If f(x,t) and Df(x,t) exist and are continuous for x ∈ U ⊆ Rn and t ∈ (a,b), then for any X ∈ U and
T ∈ (a,b), there exists a unique solution to the equation above on some open interval containing T .

Now, with all the preamble done, we can move onto solving systems of ODEs.

5.3 Homogeneous 2× 2 Systems with Constant Coefficients
The system of ODEs,

x′ = ax+ by

y′ = cx+ dy

can be written as a matrix equation, [
a b
c d

] [
x
y

]
=

[
x
y

]′
or somewhat less descriptively as,

Ax = x′

Now, find the eigenvalues and eigenvectors of the matrix equation. Again, if you want a more detailed
overview on how to actually perform those computations, please read my guide for MA106.

There is a method to solve matrix differential equations that avoids finding the eigenvalues and eigenvec-
tors, but requires possibly more difficult calculations. This method, matrix exponentiation, is discussed
in § 7.8.

While not particularly feasible to do by hand, it can be easier to use matrix exponentiation than to find
eigenvalues and eigenvectors when using a computer, and understanding the method conceptually can
be useful.

5.3.1 Distinct Real Eigenvalues

If u,v, u, and v are distinct eigenvalues and their corresponding eigenvalues of A, then the general
solution is given by,

x = Aeutu+Bevtv

where A and B are constant coefficients to be determined.
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5.3.2 Complex Eigenvalues

If u = p+ iq is a complex eigenvalue with corresponding eigenvector, u =

[
a+ ib
c+ id

]
, then we write,

x = Aeutu

= e(p+iq)t

[
a+ ib
c+ id

]
Using Euler’s formula, we can rewrite this as,

= ept(cos(qt) + i sin(qt))

[
a+ ib
c+ id

]
= ept

([
a cos(qt) + ib cos(qt)
c cos(qt) + id cos(qt)

]
+

[
ia sin(qt)− b sin(qt)
ic sin(qt)− d sin(qt)

])
= ept

([
a cos(qt)− b sin(qt)
c cos(qt)− d sin(qt)

]
︸ ︷︷ ︸

v1(t)

+i

[
a sin(qt) + b cos(qt)
c sin(qt) + d cos(qt)

]
︸ ︷︷ ︸

v2(t)

)

so we have found two linearly independent solutions, so we can write the general solution as,

x = ept (Av1(t) +Bv2(t))

where A and B are constant coefficients to be determined.

Note that you only have to do this process with one eigenvalue and eigenvector, as the other set will
differ only by a minus sign, which eventually gets absorbed into the constant coefficients.

5.3.3 Repeated Real Eigenvalues

If λ is a eigenvalue with multiplicity 2, then find a vector, v1 that satisfies,

(A− λI)v1 = 0

then, a second vector, v2 that satisfies,

(A− λI)v2 = v1

The general solution is then given by,

eλt(Av1 +B(v2 + tv1))

5.4 Diagonalisation and Decoupling
If Ax = x′, and A has distinct eigenvalues, swapping to an eigenbasis will let you decouple a system of
ODEs by defining a new variable in the eigenbasis.

i.e., Let x′ = Ax, and suppose A has eigenvalues u and v and corresponding eigenvectors u and v. Let
P be the matrix with u and v as columns. P is a change of basis matrix from the eigenbasis, Y to the
canonical basis, X:

X X ′

Y Y ′B

A

P P
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We see that B = P−1AP. Being in an eigenbasis, B will be a diagonal matrix with u and v along the
diagonals.

Let W = P−1x, so,

W′ = P−1x′

= P−1Ax

= P−1APW

= P−1BW[
w′

z′

]
=

[
u 0
0 v

] [
w
z

]
So w′ = uw and z′ = vz, so w = Ceut and z = Devt, where C and D are constant coefficients to be
found.

Decoupling can also be done without transforming into an eigenbasis by defining new variables in the
right way.

Example. Transform the third-order homogeneous differential equation,

d3x

dt3
− 3

dx

dt
− 2x = 0

into a system of three first-order differential equations.

Let x = x, y = x′ and z = x′′. · · ·
· · ·
· · ·

xy
z

 =

x′

y′

z′

 =

 x′

x′′

x′′′


dx

dt
= x′

= y

dy

dt
= x′′

= z

dx

dt
= x′′′0 1 0

0 0 1
· · ·

xy
z

 =

x′

y′

z′


x′′′ − 3x′ − 2x = 0

x′′′ = 3x′ + 2x

x′′′ = 3y + 2x0 1 0
0 0 1
2 3 0

xy
z

 =

x′

y′

z′



5.5 Phase Portraits
Find all eigenvalues and eigenvectors of the system.
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The following sections may be easier to remember if you recall the geometric interpretation of eigenvalues
- the real part represents the local scaling, while the imaginary part represents the local rotation.

5.5.1 Distinct Real Eigenvalues

Draw the span of the eigenvectors, with arrows pointing outwards from the origin if the eigenvalue is
positive, and inwards if negative.

If your eigenvalues are,

• both positive,

– If you have eigenvalues, say, 3 and 2, then e3t ≫ e2t as t → ∞, so your trajectories should
tend towards being parallel to the eigenvector with eigenvalue 3.

– This is an unstable node.

• both negative,

– With similar reasoning, your trajectories should tend towards being parallel to the eigenvector
with the larger absolute value of eigenvalue.

– This is a stable node.

• one positive, one negative,

– One line should point inwards, and one points outwards.

– Draw hyperbolae-esque trajectories between the lines as expected.

– This is a saddle point.

0 < λ1 < λ2

Unstable Node
λ1 < λ2 < 0
Stable Node

λ1 < 0 < λ2

Saddle Point

All three figures have ı̂ and ȷ̂ as eigenvectors.

5.5.2 Complex Eigenvalues

Say the system
Ax = x′

has matrix
A =

[
a b
c d

]
and you have eigenvalues p+ qi, with q ̸= 0. Then, if,

• p > 0, the trajectories will spiral outwards, an unstable spiral ;

• p < 0, the trajectories will spiral inwards, a stable spiral ;
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• p = 0, i.e., the eigenvalues are purely imaginary, the trajecctories will form circles or ellipses around
the origin, a centre.

In all three cases, the motion is clockwise if b− c > 0, and anticlockwise if b− c < 0.

ℜ(λ) > 0,ℑ(λ) ̸= 0
Unstable Spiral

ℜ(λ) < 0,ℑ(λ) ̸= 0
Stable Spiral

ℜ(λ) = 0,ℑ(λ) ̸= 0
Centre

All three figures have b− c < 0.

5.5.3 Repeated Real Eigenvalues

If the matrix is a multiple of the identity, then trajectories just point outwards/inwards evenly. This
is a star, pointing outwards/is stable if the eigenvector is positive and pointing inwards/is unstable if
negative. (Geometrically, if it’s a multiple of the identity, then it’s locally just a scaling transformation,
so everything just moves directing in or out from the fixed point).

If the matrix is not a multiple of the identity, then sample some random points to get an idea of what
the trajectories should look like. Easy points to sample are (1,0), (0,1), (−1,0) and (0,− 1). You can get
either an improper node, unstable if eigenvalue is positive, stable if negative, or a line of (un)stable fixed
points. An unstable improper node can also be called a degenerate sink, and a stable improper node a
degenerate source.

The trajectories in an improper node are parallel to the span of the eigenvector near the origin, then
completely reverse in direction. For lines of (un)stable fixed points, the parallel sets of trajectories flow
into or out from the line spanned by the eigenvector.

ℜ(λ) > 0,ℑ(λ) ̸= 0
Unstable Star

ℜ(λ) < 0,ℑ(λ) ̸= 0
Stable Star

ℜ(λ) > 0,ℑ(λ) ̸= 0
Unstable Improper Node
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ℜ(λ) > 0,ℑ(λ) ̸= 0
Line of Unstable Fixed Points

ℜ(λ) < 0,ℑ(λ) ̸= 0
Line of Stable Fixed Points

ℜ(λ) < 0,ℑ(λ) ̸= 0
Stable Improper Node

If you want a more general way to classify all these points, you can compute the trace and determinant
of the matrix A.

Let ∆ = (TrA)2 − 4 detA.

∆,TrA,detA = 0, then the matrix is the zero matrix and every point is locally a fixed point;

detA < 0 - saddle;

∆ > 0,TrA > 0,detA = 0 - line of unstable fixed points;

∆ > 0,TrA < 0,detA = 0 - line of stable fixed points;

∆ > 0,TrA > 0,detA > 0 - unstable node;

∆ > 0,TrA < 0,detA > 0 - stable node;

∆ = 0,TrA > 0,detA > 0 - unstable improper node;

∆ = 0,TrA < 0,detA > 0 - stable improper node;

∆ < 0,TrA > 0,detA > 0 - unstable spiral;

∆ < 0,TrA < 0,detA > 0 - stable spiral;

A = kI,k > 0 - unstable star;

A = kI,k < 0 - stable star;

∆ < 0,TrA = 0,detA > 0 - centre.

5.6 Local Linearisation near Fixed Points
If we have the system,

x′ = f(x,y)

y′ = g(x,y)

where f and/or g are non-linear, and you are asked to draw a phase diagram of fixed points of this
system, evaluate the Jacobian (§ 5.1) at each fixed point and use it as your matrix for determining
eigenvalues/eigenvectors.

Example. Consider the system,

x′ = y (1)

y′ = −x+ y − x2y (2)

(This is the Van der Pol oscillator). Find and classify a fixed point of this system.

Clearly, (0,0) is a fixed point of this system. But what does the phase diagram look like?
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First, compute the Jacobian:

DX =

[
0 1

−1− 2xy 1− x2

]
and evaluate it at our fixed point,

DX =

[
0 1
−1 1

]
which has eigenvalues 1

2 ±
√
3
2 , indicating that the phase portrait around the fixed point is locally an

unstable spiral.
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6 Closing Remarks & Condensed Summary

As was mentioned in the introduction, this module is extremely computational in nature, and doesn’t
require a lot of conceptual understanding. Do some practice if you haven’t integrated or solved recurrence
relations in a while, and you’ll be fine.

If you memorise just the list below, you’ll almost certainly pass.

• DEs:

– Memorise what linear, homogeneous, autonomous, etc. mean. It’s an easy 4 or 5 marks.

– Your methods of constructing and solving DEs should be the same as from A-Levels, so you
should be okay on those.

– If dx
dt = f(x,t) and x(a) = b, then,

∗ A solution exists if f(x,t) is continuous near (a,b).

∗ The solution is unique if ∂f
∂x is continuous near (a,b).

– Fundemental Theorem of Calculus:

∗ Suppose f : [a,b] → R is continuous.

∗ Let G(x) =
∫ x

a
f(z) dz.

∗ Then, d
dxG(x) = f(x).

∗ Furthermore,
∫ b

a
f(x) dx = F (a)− F (b) for any F such that F ′(x) = f(x).

• Recurrence relations, you solve in the exact same way as DEs. Just take care to multiply your
ansatz by n2 if it is an exponential with base equal to a repeated root.

• Decoupling: Let y = P−1x and write down the matrix with eigenvalues on the diagonal.

• Phase Portraits:

– Distinct & real eigenvalues - draw aigenvectors, and trajectories tend towards the one with
larger magnitude (nodes and saddles).

– Complex eigenvalues - spirals inwards if ℜ(λ) < 0, outwards if ℜ(λ) > 0 and forms circles or
ellipses if ℜ(λ) = 0, clockwise if b − c > 0 and anticlockwise if b − c < 0, where b and c are
from the equation matrix (spirals and centres).

– Repeated real eigenvalue - if the equation matrix is a multiple of the identity, it’s a star.
Otherwise, sample random points to test for an improper node or a line of (un)stable points.

– If you’re ever unsure as to where your trajectory should go, sample some points. ±̂ı and ±ȷ̂
are often easy to check.

• Linearising - evaluate the Jacobian of your vector function at a fixed point to locally linearise the
system.
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7 Additional Techniques

This section will cover further techniques for integration that you may find faster and/or easier to perform.
These techniques are not examinable, but I highly recommend at least learning tabular integration by
parts, as it streamlines the method taught at A-Level to an extreme degree, particularly for repeated
applications of integration by parts.

7.1 Tabular Integration by Parts
Say we want to integrate this function, ∫

a(x)b(x) dx

Being a product of two functions, we use integration by parts.

Draw out a table, with D above the first column and I above the first, then put a column of alternating
plusses and minuses, besides the first, starting with a plus. You’ll get a feel for how many rows you’ll
need as you get more used to using this method, but for now, I’ve drawn 4.

D I

+

−

+

−

Now, look at the integral, and decide which function is easier to differentiate. Or more usually, which
function you don’t want to integrate. Suppose we don’t want to integrate a(x), so we differentiate a(x)
and integrate b(x).

Put a(x) under D, and b(x) under I, and differentiate and integrate them repeatedly, putting the result
in the next row each time. For ease of reading, let b.(x) indicate the first integral of b(x), b..(x) the
second, and so on.

D I

+ a(x) b(x)

− a′(x) b.(x)

+ a′′(x) b..(x)

− a′′′(x) b...(x)

When we decide to stop (I’ve done 3 additional rows here), multiply diagonal elements, keeping the signs
attached. Then, multiply the final row horizontally and throw it into an integral;

D I

+ a(x) b(x)

− a′(x) b.(x)

+ a′′(x) b..(x)

− a′′′(x) b...(x)

×

×

×
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∫
a(x)b(x) dx = [+a(x)b.(x)] + [−a′(x)b..(x)] + [a′′(x)b...(x)] +

∫
[−a′′′(x)b...(x)] dx

But when do we know when to stop?

There are three main stops:

• There is a 0 in the D column.

• You can integrate a row.

• A row appears more than once.

In the first case, when you multiply the last row together, the final integral just disappears. In the second
case, if you can integrate a row, just stop the process and do the integral. In the third case, if a row
appears more than once, that means you can rewrite the original integral in terms of itself, plus some
extra stuff at the front, which you can rearrange for.

Example. Evaluate, ∫
x3 sin(4x) dx

It’s almost always ideal to differentiate the polynomial, as we know we can eventually get it to 0. The
sine function is fine to integrate as well, so let’s do that.

D I

+ x3 sin(4x)

− 3x2 − 1
4 cos(4x)

+ 6x − 1
16 sin(4x)

− 6 1
64 cos(4x)

+ 0 1
256 sin(4x)

×

×

×

×

∫
x3 sin(4x) dx = −1

4
x3 cos(4x) +

3

16
x2 sin(4x) +

3

32
x cos(4x)− 3

128
sin(4x)

Example. Evaluate, ∫
x3 lnx dx

We like to differentiate polynomials, but integrating lnx requires integration by parts in the first place,
which we would like to avoid, especially if we are repeatedly integrating it. So, we differentiate lnx and
integrate x3.

D I

+ lnx x3

− 1
x

1
4x

4
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If we look at the final row, we can already integrate its product, so we stop.

D I

+ lnx x3

− 1
x

1
4x

4

×

∫
x3 lnx dx =

1

4
x4 lnx− 1

4

∫
x3 dx

=
1

4
x4 lnx− 1

16
x4

Example. Evaluate, ∫
ex sinx dx

ex and sinx are both easy to integrate and differentiate, so it doesn’t really matter which way around
we put them. Let’s differentiate ex and integrate sinx.

D I

+ ex sin(x)

− ex − cos(x)

+ ex − sin(x)

×

×

We see that the final row is a copy of the first one (ignoring signs), so we can rewrite the integral as,∫
ex sinx dx = −ex cosx+ ex sinx−

∫
ex sinx dx

2

∫
ex sinx dx = −ex cosx+ ex sinx∫
ex sinx dx =

1

2
ex sinx− 1

2
ex cosx

7.2 Variation of Parameters
Variation of parameters is a general method to solve non-homogeneous linear ODEs, though it can also
be extended to solve PDEs as well.

Here, we will only consider second order ODEs,

x′′ + bx′ + cx = f(t)

(we divide through by the constant coefficient of x′′ to simplify this method).

Consider the solution to the homogeneous case, which depends on the solutions to the auxiliary equation,

x = Aeαt +Beβt

x = (A+Bt)eαt

x = ept(A cos(qt) +B sin(qt))
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Notice how each solution can be split into two linearly independent parts (see MA106 if you are unfamiliar
with linear independence), x1 and x2, where,

x1 = Aeαt, x2 = Beβt

x1 = Aeαt, x2 = Bteβt

x1 = Aept cos(qt), x2 = Bept sin(qt)

The functions x1 and x2 are the fundamental solutions of the equation.

We define the Wronskian matrix as, [
x1 x2

x′
1 x′

2

]
From linear algebra, we know that the Wronskian determinant, W , of this matrix cannot be 0. We use
the Wronskian determinant to find the particular integral of the equation.

x = −x1

∫
x2f

W
dx+ x2

∫
x1f

W
dx

Remember to add the complementary function to your particular integral afterwards to get the general
solution.

7.3 Weierstrass Substitution
The Weierstrass substitution is a change of variable that transforms rational functions of trigonometric
functions into an ordinary rational function of a parameter, t.

Letting t = tan x
2 , we can transform the integral,∫

f(sinx, cosx) dx =

∫
f

(
2t

1 + t2
,
1− t2

1 + t2

)
2

1 + t2
dt

Geometrically, as x varies, the point (cosx, sinx) travels across the unit circle at unit speed. In other
words, it is a unit speed parametrisation (see MA134). The Weierstrass substitution is an alternative
parametrisation of the unit circle such that the point

(
1−t2

1+t2 ,
2t

1+t2

)
travels around the unit circle only once

as t varies from −∞ to ∞, starting and ending at (−1,0). If you are familiar with projective geometry,
this substitution can be viewed as the sterographic projection of the unit circle onto the y-axis from the
point (−1,0). This view can help you rederive various formulae on the fly, if required.

7.4 Reduction Formulae
A reduction formula allows you to write a recurrence relation for an integral in terms of related integrals
with hopefully smaller exponents.

We do this by splitting up the exponent, substituting if needed, then integrating by parts.

Example. ∫
sinn x dx

We wish to find a reduction formula for this integral. Start by setting,

In =

∫
sinn x dx

=

∫
sinn−1 x sinx dx
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= − sinn−1 x cosx+

∫
(n− 1) sinn−2 x cos2 x dx

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x(1− sin2 x) dx

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x dx− (n− 1)

∫
sin2 x dx

= − sinn−1 x cosx+ (n− 1)In−2 − (n− 1)In

In + (n− 1)In = − sinn−1 x cosx+ (n− 1)In−2

In = − 1

n
sinn−1 x cosx+

n− 1

n
In−2

So now, if we’re given, for example,
∫
sin100 x dx, we can repeatedly apply the reduction formula until

the power is low enough for us to evaluate the integral by hand.

7.5 Euler Substitution
If f(a,b) is a rational function, then ∫

f(x,
√
ax2 + bx+ c) dx

can be changed into the integral of a rational function using Euler substitutions.

If a > 0, solve
√
ax2 + bx+ c = ±x

√
a + t for x (the positive or negative sign can be chosen at will,

depending on which is easier). The result will be a rational expression, that also allows us to write dx
as a rational expression of t when we perform the substitution.

If c > 0, solve
√
ax2 + bc+ c = xt±

√
c for x, and use the result as your substitution. Again, the positive

and negative sign can be chosen at will.

If ax2 + bx + c has real roots, α,β, then we solve
√
a(x− α)(x− β) = (x − α)t for x, which will again

result in a rational expression.

7.6 Laplace Transformations
This technique is completely overkill for this module, but it can be a very good shortcut if you prefer
memorisation based methods.

The Laplace transform is an integral transform that converts a real-valued function (often, t) into a
complex-valued function (often of a complex variable, s). This transform is useful because linear differ-
ential equations transform into simple algebraic equations.

The Laplace transform of a function, f(t), is given by

L(f(t)) =

∫ ∞

0

e−stf(t) dt

While this looks intimidating, in practice, you just memorise the transforms of common functions. A
short table of such transforms is included below. L(f(t)) is also often written as F (s).
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f(t) L(f(t))

c c
s

t 1
s2

tn n!
sn+1

tne−αt n!
(s+α)n+1

e−αt 1
s+α

1− e−αt α
s(s+α)

sinωt ω
s2+ω2

cosωt s
s2+ω2

In general, multiplying a function by e−αt shifts the s along by α in the transform, i.e., L(e−αtf(t)) =
F (s+ α).

If you intend on using Laplace transforms, you should commit this table, and more, to memory, as you
will also need to be able to recognise them quickly in order to find the inverse Laplace transform of some
given F (s).

Example. Given,

F (s) =
s+ 3

s2 + 6s+ 13

what is L−1(F (s))?

Completing the square on the denominator, we have s+3
(s+3)2+4 , which matches the form for cosine. But

the s is shifted along by 3, so we have f(t) = e−3t cos 2t.

An important property of the Laplace transform, is that it is a linear operator (see MA106). We should
also look at the effect of taking the Laplace transform of a derivative:

L(f ′(t)) =

∫ ∞

0

e−stf ′(t) dt

= e−stf(t)

∣∣∣∣∞
0

+

∫ ∞

0

se−stf(t) dt

= e−stf(t)

∣∣∣∣∞
0

+ s

∫ ∞

0

e−stf(t) dt

= e−stf(t)

∣∣∣∣∞
0

+ sLf(t)

= [0]− [f(0)] + sLf(t)

= sL(f(t))− f(0)

so we can rewrite the Laplace transform of a derivative as the Laplace transform of the original function,
plus an initial condition. Similarly, we have,

L(f ′′(t)) = sL(f ′(t))− f ′(0)

= s2L(f(t))− sf(0)− f ′(0)

and this pattern continues for higher derivatives.

Now, let’s use the Laplace transform to solve an initial value problem.

Example.
x′′ + 5x′ + 6x = 0, x(0) = 2, x′(0) = 3

x′′ + 5x′ + 6x = 0
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L(x′′ + 5x′ + 6x) = L(0)

Recall that the Laplace transform is linear, and so,

L(x′′) + 5L(x′) + 6L(x) = L(0)

(s2L(x)− sx(0)− x′(0)) + 5(sL(x)− x(0)) + 6L(x) = 0

(s2 + 5s+ 6)L(x) = (s+ 5)x(0) + x′(0)

Use our initial conditions,

(s2 + 5s+ 6)L(x) = 2s+ 13

L(x) =
2s+ 13

s2 + 5s+ 6

L(x) =
2s+ 13

(s+ 2)(s+ 3)

Performing partial fraction decomposition,

L(x) = 9

(
1

s+ 2

)
− 7

(
1

s+ 3

)
L(x) = 9L(e−2t)− 7L(e−3t)

L(x) = L(9e−2t − 7e−3t)

x = 9e−2t − 7e−3t

It is important to note that you generally cannot find the Laplace transform of the product or composition
of two functions. However, due to linearity, as long as your function can be written as the sum of known
functions, you can work out its Laplace transform.

If you take probability or any kind of electrical engineering or signal/image processing, you may be
familiar with convolution. You’ll be happy to know that the Laplace transform of a convolution is simply
the product of the Laplace transforms. That is, L((f ∗ g)(t)) = L(f(t)) · L(g(t)) = F (s) ·G(s).

For image processing, which I am most familiar with, convolving an image with a kernel is required for
a multitude of operations, including blurring, sharpening and edge detection. But convolving the naive
way can be an extremely slow process, especially for large kernels. Many modern convolution functions
take an integral transform (often Fourier, rather than Laplace), allowing convolution to be applied as a
multiplication, which is much faster to compute, before transforming back to the original image.

7.7 Leibniz Integration Rule

d

dx

(∫ b

a

f(x,t) dt

)
=

∫ b

a

∂

∂x
f(x,t) dt

There is a longer form for non-constant bounds of integration, but we will focus on the special case of
constant bounds.

This theorem allows us to integrate functions we otherwise wouldn’t be able to.

Example. Evaluate ∫ ∞

0

sin t

t
dt

(The integrand is also known as the (unnormalised) sinc function, a function occuring often in signal
processing contexts. This particular definite integral is the Dirichlet integral, and cannot be evaluated
using standard methods.)
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We begin by defining a function,

f(s) =

∫ ∞

0

e−st sin t

t
dt

(The similarity with the earlier Laplace transform is not a coincidence. There is a much faster way
of doing this using the Laplace transform, combined with Abel’s theorem, but that method will not be
covered here, as it is beyond the scope of this document.)

We note that f(0) is equal to the desired integral.

df

ds
=

d

ds

∫ ∞

0

e−st sin t

t
dt

=

∫ ∞

0

∂

∂s
e−st sin t

t
dt

= −
∫ ∞

0

e−st sin t dt

You can alternatively use the complex definition of sine to perform this integral as an exercise.

= −e−st(cos t+ s sin t)

s2 + 1

∣∣∣∣t=∞

t=0

= − 1

s2 + 1

Now, we integrate both sides with respect to s.

f(s) = −
∫

1

s2 + 1
ds

= − arctan s+ C

− arctan s+ C =

∫ ∞

0

e−st sin t

t
dt

Here, we can try some values of s to get some information about C. s = 0 doesn’t work, because we just
get the original problem back. Let’s see what happens as s → ∞.

lim
s→∞

− arctan s+ C = lim
s→∞

∫ ∞

0

e−st sin t

t
dt

lim
s→∞

− arctan s+ C = lim
s→∞

∫ ∞

0

sin t

test
dt

−π

2
+ C =

∫ ∞

0

0 dt

−π

2
+ C = 0

C =
π

2

f(s) =
π

2
− arctan s

f(0) =
π

2
− 0∫ ∞

0

e−0t sin t

t
dt =

π

2∫ ∞

0

sin t

t
dt =

π

2
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7.8 Matrix Exponentiation
This is an extremely brief overview of matrix exponentiation, meant as a preview for content of future
modules, rather than as a practical method. Feel free to skip this section if uninterested.

Consider the first order ODE,
x′ = ax

so the rate of change of x is proportional to its size at every given value of t.

Now consider the function, eat. d
dte

at = aeat, so we see that this proportionality is the same thing as
exponential growth, and indeed the general solution, is given by x = x0e

at.

But one way to think about how this solution actually works, is that eat isn’t a “solution”, but instead
is some real-valued function acting on some initial condition determined by x0, to give how the ODE
would behave under those specific conditions.

Now, we can generalise to higher dimensions.

Consider the linear system of equations given by,

x′ = Ax

We can also write the solution as some exponential term acting on an initial condition, just like with
the one-dimensional case. But here, the exponential term, rather than being a real-valued function of
timme, is a matrix-valued function of time, and the initial condition is a vector instead.

The general solution is given by,
x = exp(At)x0

Obviously, evaluating an infinite power series of matrices is not very practical to do by hand, but there
are ways to simplify such expressions. You will learn more on this in second year.

7.9 Non-Elementary Integrals
If you somehow end up with one of these when constructing a differential equation for a question, you’ve
probably done something wrong earlier.

The following is a non-exhaustive list of integrals that you will not be able to evaluate.∫ √
1 + xn dx, n ∈ N, n ≥ 3∫ √
1− xn dx, n ∈ N, n ≥ 3∫

xx dx∫
x−x dx∫
1

lnx
dx∫

xn

ex − 1
dx n ∈ N

∫
sin(sinx) dx∫
arcsin(arcsinx) dx∫
sin(x2) dx∫
cos(x2) dx∫
sinx

x
dx∫

ln(lnx) dx

∫
ee

x

dx∫
ex

2

dx∫
e−x2

dx∫
ex

x
dx∫

e−x

x
dx∫

xc−1e−x dx, c /∈ N

While you don’t have to memorise all of these, it’s good to be able to recognise when you have an integral
you can’t evaluate, so you can go back and check your previous working, rather than wasting time on
the integral.
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